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Topologies are introduced into the nuclear configuration space R of molecular 
systems, based upon equipotential  contour hypersurfaces on the potential  
energy hypersurface E. Critical level topologies TEe and TFc,, based upon 
the number  and distribution of various critical points of E, are of particular 
importance,  since they represent  convenient yet rigorous mathematical  
models for relations between e lementary reaction mechanisms, and for rela- 
tions between open sets of nuclear geometries which are classically accessible 
at a given total energy. 
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1. Introduction 

The energy hypersurface model of chemical reactions and conformational  
changes is one of the most  powerful tools of theoretical chemistry. Within the 
Born -Oppenhe im er  approximation this model  gives a detailed description of 
energetic relations governing chemical changes on the molecular level. By 
introducing a suitable metric into the nuclear configuration space R over which 
the E(r) hypersurface is defined 1, it is possible in principle to obtain detailed 
numerical information about  all possible chemical processes on the given hyper- 
surface. Whereas  this approach is not always feasible due to the often enormous 
computat ional  work that would be required for a full analysis, topological analysis 
of the hypersurface, applied in combination with, or replacing a metric space 

1 In this paper the same notations will be used as in Ref. [1]. In particular, for the n-dimensional 
nuclear configuration space symbol n will be omitted and we shall write R for hR. All other 
dimensions, including dimension 1, will be always shown, e.g.XR. 
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approach, may lead to significant simplifications and a better understanding of 
the general features of such chemical processes. A topological model is strongly 
suggested by many familiar chemical concepts, since concepts like chemical 
structure or reaction mechanism are inherently topological in nature [2]. 

Recently two schemes have been proposed for the partitioning of the nuclear 
configuration space R into mutually exclusive subsets [1, 2]. In the first partition- 
ing the subsets D~ c R are defined in terms of the curvature properties of the 
hypersurface E c "+ lR  over tangent spaces of equipotential contour maps [1]. 
These subsets may be ordered into a hierarchy according to an index Ix where 
Ix is the critical point index of "+~r ~ E in the tangent space. The larger the index 
tz, the less likely that a minimum energy path enters D,.  Do domains have the 
important property that all energy minima and transition states belong to such 
Do domains and minimum energy reaction paths are stable only in the interior 
of Do domains. A complete partitioning of the nuclear configuration space R is 
given by 

R = U D~ u Dex~, (1) 

where "excluded" domain Dexd contains neighborhoods of all points where the 
hypersurface is a poor approximation to the energy expectation value. 

Another partitioning of the nuclear configuration space has been given, based 
upon the number and type of critical points of the E(r)  hypersurface [2]. The 
number of minima and the number of other critical points, e.g. saddle points of 
transition states are not independent, these numbers are governed by the Morse 
inequalities [3]. Critical points rc ~ R may be characterized by the rank and the 
number h of negative eigenvalues of the Hessian matrix H(rc) .  If the rank of 
the Hessian matrix is equal to the dimension n of space R, i.e. the critical point 
rc is non-degenerate, then index h may be used as a single-index classification. 
Only critical points with index h = 0 (minimum) or index h = 1 (saddle point 
with one negative canonical curvature, usually referred to as transition state) 
are of primary importance on potential energy hypersurfaces, and no minimum 
energy path may pass through any critical point with ,~ -> 2 [4]. Nevertheless, as 
it has been pointed out, the number and position of all critical points, even 
those not located along minimum energy paths, give important information on 
reaction paths [5]. Information on the relative position and number of various 
critical points may also aid the solution of optimization problems on energy 
hypersurfaces [6]. In the partitioning scheme an important property of critical 
points is utilized: since the Born-Oppenheimer energy expectation value func- 
tional is bounded from below, the extremity of every steepest descent path Pr 
is either a critical point rc or a point in the excluded domain Dexc~. Consequently, 
the steepest descent paths may be ordered into equivalence classes according to 
the number and type of critical points [2], which, in turn, leads to the ordering 
of the r ~ R origin points of steepest descent paths Pr into catchment regions 
{C r~} of critical points {r~)}, r~ ) ~ R, r~)~/Sexc~. A complete partitioning of the 



Critical Level Topology 99 

nuclear configuration space R is given by 

R = L.J c "'~ w c z5 .... w/~xcl. (2) 
l 

Here C D .... is defined as the catchment region of/3excl, where/Sexcl is the closure 
of excluded domain Dexd [2]. It has been shown that the catchment regions 
{C rCg} give mutually consistent and quantum mechanically rigorous definitions 
for two of the most fundamental chemical concepts: molecular structure and 
reaction mechanism [2]. It has been suggested [7] that the molecular structure 
definition, based upon catchment regions in the n-dimensional nuclear configur- 
ation space R is closely related to the molecular structure definition based on 
molecular graphs of "bond paths", in the real, Euclidean three dimensional 
space 3R, determined from charge density calculations [8]. 

Short of a global analytic representation it is a rather difficult task to analyze 
the global properties of the Born-Oppenheimer energy hypersurface. Sets of 
grid points of varying density in the nuclear configuration space, or point series 
converging to a critical point (usually to a minimum) are used most often to 
construct approximations to a portion of the hypersurface. 

Alternatively, equipotential contours of E may be determined using contour 
following algorithms. This approach, which leads to subsets of E, complements 
the usual optimization techniques, which have the primary aim of locating critical 
points of E. These subsets of E are of considerable value in the analysis of 
chemical processes, since they can be used for a global characterization of E. 
The dimension of equipotential contours is n - 1 and for large n their determina- 
tion is a complicated task. An analysis of the topological properties of these 
contours, however, can decide which contours can provide the most chemically 
useful information, and it leads to relations which simplify their determination. 
Topological properties os contour sets are of fundamental importance in the 
analysis of chemical reactions and conformational changes. In this paper we shall 
study some of these topological properties, with special emphasis on contours 
containing non-degenerate critical points of/7. 

2. Critical Points, Ordinary Levels, and Critical Levels 

Both the D~ domain and C "C<t) catchment region partitionings of the nuclear 
configuration space R, Eqs. (1) and (2), resp., involve disjoint subsets of R, and 
both lead in a natural way to chemically meaningful topologizations of space R. 
Whereas the properties of the corresponding (R, TD) and (R, Tc) topological 
spaces are discussed elsewhere [9], in the present study we shall introduce a 
topology into the R space which is suitable for the analysis of the energy 
requirements of molecular processes. This topologization, just as the Tc topology 
[9], is based upon the critical points of the hypersurface, however, it utilizes 
properties of equipotential contour hypersurfaces rather than those of catchment 
regions. This topology, just as the To and Tc topologies, is global in the sense 
suggested by Davidson in a topological study on triatomic systems [10], and it 



100 P.G. Mezey 

is expected to be applicable for the analysis of interrelations between energy 
component hypersurfaces [11, 12] as well. 

Critical points of the energy hypersurfaces determine many of the topological 
features including the distribution and type of catchment regions [2]. Using a 
series of model surfaces, depicting various topologically distinct cases, it has been 
demonstrated that the number and type of critical points are of primary import- 
ance in determining the fundamental morphology of the hypersurface [5]. It has 
been pointed out that the number of possible reaction mechanisms is limited by 
relations governing the number of minima (A = 0), saddle points, (including 
transition states with A = 1), and maxima [5]. For the most general hypersurfaces 
these relations are given by the Morse inequalities [3], however, for special cases 
simpler inequalities may apply [13]. The same model surfaces have also indicated 
that the distribution (relative location) of various critical points along the hyper- 
surface plays an equally important role and in special cases it may indeed be 
the dominant influencing factor 2. Whereas the determination of the precise 
location of critical points is an optimization problem in a metric space [6] and 
cannot be solved in general by purely topological means, nevertheless, a topologi- 
cal characterization of this distribution may be given in terms of catchment 
regions by defining a , (i) r~ )  neighbour relation Ntrc ,  for critical points r~ ) and r~ ) : 

otherwise. (3) 

The catchment region partitioning and the above neighbour relation extends the 
applicability of the critical point theory [3, 14, 15] from a set of discrete points 
to chemically identifiable connected point sets of the entire hypersurface. The 
combination of catchment region analysis and critical point theory leads to 
important inequalities governing the number of chemical structures and the 
number of possible reaction mechanisms on energy hypersurfaces [2, 13]. These 
relations describe constraints on the number of critical points of the entire 
hypersurface, or of a unit cell of a periodic hypersurface. However, they do not 
provide sufficient information on the accessibility of catchment regions of various 
critical points. Accessibility depends on the energy values associated with critical 
points. A systematic study of the classically accessible regions of the energy 
hypersurface, subject to an upper bound on the energy value, is based on 
homeomorphic level set topologies introduced into the nuclear configuration 
space R and energy hypersurface E. 

2 Periodicity in the occurrence of critical points may greatly simplify the analysis, although the 
boundaries of a representative subdomain (unit cell) [5, 6] must be chosen with care, particularly 
in higher dimensions n. In example D of Ref. [5] (Fig. 3) the model for a linear chain of alternating 
minima and maxima has a unit cell which contains one maximum and one minimum and there is 
no regular saddle point only degenerate saddle point at infinity. That is, all minimum energy paths 
on this surface extend to infinity. In example C the unit cell contains six minima and six maxima, 
five ordinary saddle points and one "four valleys" degenerate saddle point at the boundary of the 
unit cell. Here, besides the minimum energy paths passing through the non-degenerate saddle points 
and "four valleys" degenerate saddle point, there are also minimum energy paths that extend to 
infinity. 
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For a given constant A, all points ~+lr of the energy hypersurface E, n+ar~ 
E c ~+~R for which ~+lr n+l = A ,  form the level se tEa:  

EA = { n + l r :  n + l r  C E ,  n + l r  = r G E ( r ) ,  n+lrn+l = E(r)  = A}. (4) 

If there is no critical point rc of E(r)  for which r c O E ( r c )  belongs to EA, that 
is, if 

E(rc)  r A for any rc ~ R, (5) 

then A is called an ordinary level. If there is a critical point rc for which 

E(rc)  = C (6) 

then C is called a critical level. The corresponding level set is a special case of 
level sets defined by Eq. (4), explicitly: 

r n+ l  n + l t E  n+l  t n+l  n+l  E c  = l r: E, = r O E ( r ) ,  r = E(r)  = C} (7) 

is a critical level set of the energy hypersurface E. The calculation of equipotential 
hypersurface EA requires a contour following algorithm. Such algorithms are 
the most efficient when based upon the energy gradient and on the Hessian 
matrix of the second derivatives. 

Level sets EA and Ec  are analogous to contour lines on geographical relief maps, 
marking a given elevation A or C. Projections of these level sets onto the nuclear 
configuration space R lead to subsets FA and Fc: 

All points of R for which 

E(r)<_A (8) 

form the set FA, FA c R : 

FA = {r, r: E(r)  <- A }. (9) 

Set F c  is a special case of sets defined by Eq. (9), that is 

Fc  = {r, r: E(r)  <- C}. (10) 

Set FA is the set of all nuclear geometries with total energies less or equal to 
A. Two associated sets, FA and F c  are defined similarly by replacing symbol 
- by < in Eqs. (9) and (10), respectively. 

If a level set EA is disconnected, it may be given as a unique union of disjoint 
connected subsets: 

E A = U E ~  ), (11) 
i 

where the EA (i) sets are the maximum connected components of EA. 

A similar partitioning may be given for set FA (and similarly for sets FA, Fc, 
and F c ) :  

k 
FA = ~J F ~  ~. (12) 

i 
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If sets EA and FA are themselves connected, then 

Ea  = E ~  ) (13) 

and 

FA = F~ ), (14) 

respectively. 

Level sets E~  ) c E and sets F ~  ) c R have important chemical properties. Sets 
{ ~ ( 1 ) l k  
~A ~i= 1 enclose all domains of the hypersurface E which are classically accessible 

if the total energy of the molecular system is A, and the associated nuclear 
configurations are precisely the elements of sets {F~ ~ }k'=l. It is clear, that k = k' 
and that index i may be assigned consistently, that is, if 

E(r)=A for rcF(~ ) (15) 

then 

n+lr~E~, where n+lr = rGE(r). (16) 

The energy expectation value functional E(r) is bounded from both below and 
above, consequently the set 

Cc = {C (~'k)} (17) 

of all critical levels is closed and bounded by the absolute minimum and absolute 
maximum of E(r). The absolute maximum and absolute minimum themselves 
are elements of Cc. In Eq. (17) ,~ and k refer to critical point index and serial 
index of the critical point r (x'k), respectively. If for a given critical level C there 
are l isolated critical points, that is, the critical set Qc contains I isolated points, 
then Cc contains l copies of level C. If Ec contains a connected subset of critical 
points, then a single index k is assigned to the entire subset, similarly to the 
index of catchment regions of such connected degenerate critical points [2]. 
Index A is given as the smallest critical point index in the subset. With the above 
interpretation the set Cc is assumed to be a countable set. 

3. Energy Level Topologies 

Sets F ~  ) and F g  ) are either disjoint or one contains the other, since for 

F ~  ) # F ~  ) (18) 

their intersection may be non-empty, 

F(~ ) N F ~ ) # 0  (19) 

only if either 

F ~  ) ~ F~  ), (A < B) (20) 

o r  

F~  ) c F ~  ), (B <A) .  (21) 
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Consequently,  by considering the family F a of all F ~  ~ sets for all A values, that 
is 

F A = {F~ ) }, (22) 

the family generated by all finite intersections of elements of F A is F A itself. It 
is also clear that F A contains the nuclear configuration space R, 

R ~ F A, (23) 

since 

R = F ~  ) (24) 

for any level A which is an upper  bound for the energy expectation value 
functional E(r). Similarly, the empty  set is an element of F A, 

0 E F A, (25) 

since 

0 = F ~  ~ (26) 

for any lower bound B of E(r). 

Family F a is a defining subbase for a unique topology TF of the nuclear 
configuration space R. Since any finite intersection of elements of F A is also an 
element of F A, subbase F A is also a base for topology TF, and the open sets of 
the (R, TF) topological space are the unions of sets in FA. The class TF, containing 
all such unions, satisfies the conditions for a toplogy on R: 

(i) the empty  set 0 and the nuclear configuration space R belong to TF, 

0, R ~ TF, (27) 

(ii) the union of any number  of sets in TF belongs to TF 

~_J Tt~E TF, if T t~  T~ ~, (28) 

(iii) the intersection of every finite class of sets in TF is a set in TF: 

~-) Ti ~ TF, if Ti ~ TF. (29) 
i=l 

The energy functional E(r) generates a one-one and onto mapping E between 
the nuclear configuration space R and the energy hypersurface E c "+aR 

E : R  ~E .  (30) 

This mapping is continuous in the usual metric at every point r ~ R\D~c~, and 
may be extended continuously over  Dexcl [9]. The inverse of mapping E, that 
is, projection HE = E -1 

He :E-~ R (31) 
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is also continuous, consequently, mapping E is a homeomorphism between R 
and E. The L-images of the elements of the F A subbase generate a subbase 
F A~ for a unique topology TFE on the energy hypersurface E:  

F ~  = E ( F ~  ~ ), F ~  ) ~ F vA, F~)z c E (32) 

and 

.~AE = {F (~ )  }, (33)  

Just as the / 7'A subbase is a base for topology Tv on R, the defining subbase, 
F a z  is also a base for unique topology TFZ on the energy hypersurface E. 
Mapping E : R ~ E is a homeomorphism between topological spaces (R, TF) and 
(E, TFz) which topological spaces, being homeomorphic,  are topogically 
equivalent. That  is, any topological property of (R, Tv) is also a topological 
property of (E, TFz) and the two spaces may be studied simultaneously. 

The TF-open sets in the partitioning {F~}~=I of TF-open set FA, given by Eq. 
(12), are precisely those domains of the nuclear configuration space, which are 
the unions of all classically accessible nuclear configurations at or below energy 
A, but among which no interconversion may take place. Number  k is then the 
number of different "autonomic"  chemical systems, which may exist indepen- 
dently at energy A. If A and B are two non-critical levels, B > A, and if there 
is no critical level between A and B, then an energy increase A ~ B will not 
change the number of the above independent domains. That  is, in 

k 
FA = [._.J F~'  (34) 

i=1 

and 
k' 

FB = ~_J F ~  ~ (35) 
i=1 

the upper limit of indices must be the same, 

k = k'. (36) 

Furthermore,  due to properties (18-20), the indices in (34) and (35) may be 
chosen consistently, that is, 

F ~  > c F~  ). (37) 

The upper limits k and k' for index i may be different only if there is a critical 
level C such that 

A < C -< B, (38) 

since a "merger"  of two F ~  ) and F ~  > domains may occur only at a critical level 
D = C, when the energy is increased from A to B. 

A geographical example may illustrate the behavior of F ~  ~ sets during a con- 
tinuous A ~ B energy change. FA may be taken as the flooded area over a relief 
map, A is the water level. Sets F ~  > are disjoint lakes separated by dry land. It 
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is assumed that the water level is the same in all these lakes, and may change 
only simultaneously, e.g. by free exchange of ground water. If the water rises 
from level A to level B, and no critical point exists on the relief map for which 
the elevation would fall between A and B, i.e. 

C -< A (39) 

o r  

B < C (40) 

for all critical levels C, then the number of lakes will not change (k = k') during 
the flooding, A ~ B. A merger of two lakes may take place only at a critical 
level C. However,  

A < C - < B  (41) 

is only a necessary but not a sufficient condition for a merger to take place, since 
reaching a C (2'l~ critical level, e.g. the highest point of an island in the middle 
of one lake, does not imply a merger of two lakes. Nevertheless, the topological 
properties (connectedness) of the lake have changed when the island has dis- 
appeared among the waves. 

4. Critical Level Topologies 

It is apparent that all topologically significant changes occur when a critical level 
is encountered during an A ~ B energy change. This underlines the importance 
of the F c  sets (Eq. 10) and their partitionings, which are special cases of those 
given by Eq. (12): 

k 
Vc = U -~/~ /~c (42) 

i 

~(i) where connected sets P c  are disjoint. 

The family F c of all F ~  ~ sets for all critical values C, 

F c = {F~ ~ } (43) 

is a defining subbase for a unique topology Tvc on the nuclear configuration 
space R. Since subbase F c is a subset of subbase F A, 

F c C F A, (44) 

any two elements of F c are either disjoint or one contains the other. Con- 
sequently, F c is also a base for topology TFc. 

Homeomorphic  E-images of elements of F c generate a family F c e  of subsets 
of the energy hypersurface E, where 

F(i) ~(i) ~ ~(i) cE = E( t~  c ~, l~ c ~ F c, F ~  c E (45) 

and 

F c E  = { F ~ } .  (46) 
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Family F c~ is a defining subbase for a unique topology TFcE on the energy 
hypersurface E. Topological spaces (R, TFc) and (E, T~cE) are homeomorphic 
by virtue of homeomorphism 

E :(R, TFc) --> (E, TFcE), (47) 

and thus are topologically equivalent. 

Since F c is a subset of F a, Eq. (44), and similarly FcE is a subset of F ae, 
F c E ~  F AE, it follows that topological space (R, TF~) is a subspace of (R, TF), 
(R, TFc) = (R, TF), and similarly (E, TF~E) C (E, TFE). Topology TF~ is coarser 
than TF, TF~ c TF, and TFcE is coarser than TFE, Tp~E c TpE. 

By the choice of open sets of topological spaces (R, Tv~) and (E, Tvc~) the TF~ 
and TF~E topologies preserve only those chemical properties of the nuclear 
configuration space R and the energy hypersurface E, respectively, which are 
related to the classically accessible nuclear configurations at various critical 
energy values {C~X'k)}. All other properties are non-topological in the above 
topological spaces and are disregarded. Energy relations between various TFc- 
open (or TF~E-open) sets may be computed by generating intersections of these 
sets. 

For studying such intersections it is useful to introduce the concept of incidence 
matrix M pq. Assume that an ordering of critical levels is given as 

{C(P)I,"e"~ (48) 

where for every p (1 < p  --<pmax) 

C (") > C (p-l). (49) 

The matrix element M~ q of incidence matrix M pq is defined as 

:~ n,~i~ c F ~ c ~  
M~ q = [F~co ' ; F~<,~ ] = 1 u ,  ~(q) (50) 

0 otherwise. 

In the above definition 

and 

F(J~ c ~  c Fc'~ (52) 

i.e. they appear as one of the subsets in the appropriate unions given by Eq. 
(42). Since for levels C (p~ and C (q~ indices i and ] in Eq. (42) run from 1 to kp 
and from 1 to kq, respectively, consequently, incidence matrix M pq is kp by kq. 
For levels C (~'~, C (q~ and C (~, where 

C("~> C(q~> C (~, (53) 

the incidence matrices M pq and M qr are compatible for matrix multiplication. 
Furthermore, 

MPqM ~ = M "r, (54) 
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that is, the matrix product of incidence matrices for level pairs C(P), �9 C (q) and 
C (q), C (r~ is precisely the incidence matrix for level pair C (p~, C (r~. To prove 
relation (54) one has to observe only that in order to have 

M ~  r = 1 (55) 

that is, 

(1) ~ F~{p,, (56) F c c r  

it is both sufficient and necessary to have precisely one F u) C(q) set, such that 

F (IX 'cr~ F ~ { , , c F ~ , .  (57) 

F(q~, Due to properties (19-21) there can exist at most one such c set. Con- 
. (j) 

sequently, If Fc(~) fulfills (57), then 

M p q  rtarqr = t~jj, (58 )  
q, ~vl fit 

and 

k. 
It.,trPq l ~ q r  = 1 .  (59) lv l  i]' IVl j ' l  

J '=l  

That is 

(Ac~PqMqr)il  ~- 1 = MiP[, (60) 

which relation is an expression of the transitivity of inclusion. 

The above incidence matrices and relations between them are not restricted to 
critical levels, and may be applied to ordinary levels A (v), A (qy and A ('~, where 

A (v) > A (q) > A (r). (61) 

Consider TF~-open set Fc(A,  I) and its partitioning by Eq. (42): 

kX,l 
Fc(A,  l) = U F ~  )'~,',. (62) 

i 

It is clear, that there is exactly one index i' such, that 

r (x't) E ~ (i') rC(, ,n.  (63) 

It is useful to introduce the critical point characteristic]unction y : F c -> I, defined 
as  

(i) 
7(Fc~. ,  ~ ) = if r (x'/) e Fd~.~) 

otherwise. (64) 

(i') 
For set Fc~,'~ of relation (63) the characteristic function gives unity: 

(i') 
7(Fw~.,, ) = 1 (65) 

(i') 
and Fc~,,~ is regarded a pointed set with distinguished element r (x't). 
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The subclass F c' of all these pointed sets, i.e. all F c  ~ 
for which 

>) = 1, 

P. G. Mezey 

elements of subbase F c 

(66) 

is a defining subbase for a unique topology TFc, on the nuclear configuration 
space R. Since 

F c'C F c, (67) 

it follows that topology TFc, is weaker than both TFc and TF: 

TF~, ~ TFc ~ TF. (68) 

Homeomorphic  E-images of Tvc,-open sets of R define a topology TF~.,~ on the 
energy hypersurface, for which 

TVc,E ~ TFcE C TFE. (69) 

In the subbase F c' each critical level C (x't) (in case of coincident levels each 
copy) is represented by exactly one set F c  ~. Thus the enumeration problem of 
critical points [13] may be converted into the enumeration problem of sets in 
subbase F c', which may be formulated in terms of intersections. The number 
re(C, h) of critical points of index h which are elements of set F "'~ c ,  is equal to 
the number of sets F(~k.,~ ~ TF~, contained in F(~ ). Considering the subclass F c'~ 
of all A-sets, 

F c'~ = { F ~ , , , } = F  c' (70) 

of subbase F c' for a fixed h, the elements of F c'~ may be ordered according to 
index l, by 

C (~'l) > C (xa-1). (71) 

It is clear that incidence matrices/I/F q of the (R, TF~,) topological space are one 
by one, due to condition (66) on the elements of subbase F c'. That is, in (R, TF~,) 

M pq = M pq. (72) 

These M pq incidence numbers, however, may be ordered into a ma t r i x / ! / / by  
taking p and q as row and column indices, respectively. Matr ix / I / / i s  a lower 
triangle matrix, by virtue of definition (50). 

The incidence matrix M(x) is defined similarly for subset F c;~ (Eq. 70), subject 
to ordering (71), and it may be obtained by eliminating all rows p and columns 
q of/I / /except  those which refer to critical levels C ~p) and C ~q) of index h. Among 
the /l~(x) matrices O/c0 ) is unique, since it is the mo by mo null-matrix, as a 

( l ' )  
consequence of the definition of one-point sets Fc~o.,~ (Eq. 65): 

M(0) = 0. (73) 

Particularly important is the matrix M(~) since it describes the inclusion relations 
(i') 

for sets Fc  ~,. of saddle points r ~''~, which correspond to classical transition states 
of chemical reactions. The critical level C ~x't~ itself corresponds to the classical 
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minimum absolute activation energy necessary to bring about all chemical 
processes within T F c o p e n  set Fg'/~,,~ The adjective "absolute" indicates that 
these energies are measured with reference to an energy scale common for all 
TF~,-open sets. 

Each non-degenerate saddle point r ~''~ with .~ = 1 can be assigned to one and 
only one elementary minimum energy path [1, 2], representing a distinct elemen- 
tary reaction mechanism [9], and the sum of all matrix elements in row l of M(I~ 
corresponds to M~(t), the total number of (~ = 1) elementary reaction mechanisms 

(i') 
within set Fc . . '~ :  

m l ( / )  --- ~, M}]). ( 7 4 )  
q 

Those generalized minimum energy paths are also counted along which a steepest 
descent from a saddle point leads to another saddle point. 

By referring to the single-index ordering (48) of critical levels C (q) and to 
incidence matrix M, the total number of TFc,-open elements of class F c; of a 

i') 
fixed A, which elements are contained in TF~,-open set b4c~o~, is given by the 
general expression 

r A~tvq 6 (75) m;~(p) = ~ 1,1 x,x~. 
q 

Here  A refers to the critical point index of class F c;  (Eq. 70) and Aq is that of 
critical level C ~"~. In particular, the total number  of stable nuclear geometries 
(energy minima) within a TF~,-open set F"'~c~.~ is 

Pq rno(p~ = ~ M ~0.x. (76) 
q 

(f) 
and the number of Fc(r~ sets of critical level index & = 1, (and equivalently, the 
number of distinct elementary (~ = 1) reaction mechanisms) contained within 

(i') 
Fc(,~ is given by 

Pq 

q 

Due to the construction of matrix M(I~, result (77) is equivalent to Eq. (74). 

(77) 

5. Summary 

Energy level topologies, in particular the critical level topologies TFc and TFc, of 
the nuclear configuration space R are the natural mathematical models for 
studying interrelations between classically accessible regions of the potential 
energy hypersurface at various upper limits of the total molecular energy. 
Activation energies for chemical processes are directly related to open sets in 
the (R, T~c,) topological space. The enumeration of stable nuclear geometries 
and elementary reaction mechanisms, below a fixed total energy value, may be 
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fo rmu la t ed  in terms of inc idence  matr ices  II/F q and M, def ined for  e l emen t s  of 

the genera t ing  subbases F c and F c' of topolgies  Tp c and TFc,, respect ively.  
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